University of Minnesota Site Evaluation Form

Property Owner(s):

Address:

F.I.D.:

Section:

Township:

N Range:

Date:

Time:

Weather conditions:

Location Information

- shoreland
- dwelling
- replacement system
- protection area
- other establishment
- new home construction

Homeowner Information

- No. of bedrooms (if applicable): __________
- No. of residents in home: __________
- Estimated flow: __________ gpd
- Well casing depth: __________ feet

Water using devices (check):

- Garbage disposal
- Dishwasher
- Large bathtub
- Laundry/laundry tub on 2nd floor

Water use concerns (check):

- Toilet/faucet leaks
- Max load laundry/day
- Home business
- Lint screen
- Antifungal soap
- Long term prescription medications
- Frequent parties or out of town guests

Soil Data

- Soil texture classification:
 - Yes
 - No
- Unnatural soil (check):
- Type of observation (check):
- Parent material (check):
- Vegetation type (check):
- Slope form (check):
- Drainage (check):
- Located in floodplain (check):

Site Summary Data

- Standing water:
- Bedrock:
- Saturated soil:
- Maximum depth of system:
- Max elevation at system bottom:
- Soil suction factor (SSF): gpd/ft²
- Linear loading rate (LLR): gpd/ft
- Was a perc test done? Yes
- No

Soil Survey Data

- Soil Survey Data: Soil #1 Soil #2
- Map unit sym & name:
- Landscape position:
- Flood zone:
- Slope:
- Water table depth:
- Bedrock depth:
- Possible system depth:
- Texture at depth:
- Permeability (P):
- Perc(MP) = 60 / P
- NRCS onsite suitability:

Soil Boring Data

<table>
<thead>
<tr>
<th>Soil Horizon Depth (inches)</th>
<th>Texture</th>
<th>Color</th>
<th>Structure</th>
<th>Consistence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bedrock</th>
<th>Texture</th>
<th>Color</th>
<th>Structure</th>
<th>Consistence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil Horizon Depth (inches)</th>
<th>Texture</th>
<th>Color</th>
<th>Structure</th>
<th>Consistence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bedrock</th>
<th>Texture</th>
<th>Color</th>
<th>Structure</th>
<th>Consistence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil Horizon Depth (inches)</th>
<th>Texture</th>
<th>Color</th>
<th>Structure</th>
<th>Consistence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bedrock</th>
<th>Texture</th>
<th>Color</th>
<th>Structure</th>
<th>Consistence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Site Evaluation Map

List any construction issues:

__

Mapping Checklist

Map scale: __________________________ indicate north _______ show slope _______ % direction _______

Locate:

- lot dimensions/property lines
- dwellings and other improvements
- existing and/or proposed system(s)
- replacement area
- unsuitable area(s)
- public water supply wells
- pumping access
- inner wellhead zone

Easements
- phone
- electric
- gas

Setbacks
- building
- all water wells within 100 ft
- pressure pipe
- water suction pipe
- streams, lakes, rivers
- floodway and fringe

Elevations
- borings
- benchmark
- pEq tests
- horiz & vert reference pts

I hereby certify this work has been completed in accordance with all applicable ordinances, rules and laws.

_________________________ (signature) ______________________ (date)

_________________________ (license #) ______________________ (phone number)
University of Minnesota Atgrade Design Worksheet

All boxed rectangles must be entered, the rest will be calculated.

A. Average Design Flow
 Estimated __________ gpd (see figure A-1)

B. Minimum Septic Tank Capacity
 Septic tank capacity __________ gallons
 Effluent filter (yes/no) __________

C. SOILS (Site evaluation data)
 1. Depth to restricting layer __________ ft
 2. Texture __________
 3. Soil Sizing Factor (SSF) __________ ft³/gpd (see figure D-15)
 4. Linear Loading Rate (LLR) __________ gpd/ft² (see figure D-42)
 5. Land Slope __________ %
 6. Percolation rate if available __________ mpi

D. Rock Width
 Rock absorption width equals LLR(C5) times SSF(C4) =
 __________ gpd/ft x __________ ft³/gpd = __________ ft

E. System Size
 1. The height of the system is __________ feet
 2. Determine upslope berm width
 a. Upslope multiplier based on percent land slope (see figure D-46)
 b. On slopes > 1%, Upslope width = upslope multiplier(E2a) times system height (E1)
 __________ ft x __________ ft = __________ ft
 c. On slopes < 1%, upslope width equals(0.5 x absorption width) + 5 ft
 __________ x __________ + 5 ft = __________ ft
 d. Choose 2b or 2c depending on slope
 __________ ft
 3. Determine downslope berm width
 a. Downslope multiplier based on percent land slope (see figure D-46)
 b. Downslope width = downslope multiplier(E3a) times system height (E1)
 __________ ft x __________ ft = __________ ft
 c. Rock absorption width (C1) + 5 feet = 0.0 + 5ft = __________ ft
 d. On slopes >1%, downslope width equals the larger of 3b and 3c
 __________ ft
 e. On slopes < 1% downslope width equals 0.5 X absorption width +5 ft
 __________ x __________ + 5 ft = __________ ft
 f. Choose 3d or 3e depending on slope
 __________ ft
 4. System width is the sum of upslope width(E2d) plus downslope width(E3f)
 __________ ft + __________ ft = __________ ft
 5. The rock layer length is the flow (A) divided by the LLR(C5)
 __________ gpd / __________ gpd/ft = __________ ft
 6. Total length is the sum of upslope width(E2d), rock layer length(E5)
 and upslope width (E2d)
 __________ ft + __________ ft + __________ ft = __________ ft

F. Rock Volume
 1. Rock Area = Length(E5) x Width(D1+ 1ft)
 __________ ft x __________ ft = __________ ft²
 2. Multiply rock area(F1) by depth of rock(1ft) and divide by 2
 because the shape is triangular
 __________ ft² x 1ft / 2 = __________ ft³
 3. Volume in cubic yards = volume in cubic feet divided by 27
 __________ ft³ / 27 = __________ yd³
 4. Weight of rock in tons = cubic yards times 1.4
 __________ yd³ x 1.4 = __________ tons
 5. Add in 10% extra for constructability = __________ x 1.1 = __________ tons

I hereby certify that I have completed this work in accordance with all applicable ordinances, rules and laws.

[Signature] [License #] [Date]
A-1 Estimated Sewage Flows in GPD

<table>
<thead>
<tr>
<th>Number of Bedrooms</th>
<th>Class I</th>
<th>Class II</th>
<th>Class III</th>
<th>Class IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>300</td>
<td>225</td>
<td>180</td>
<td>60% of the values in the Class I, II or II columns</td>
</tr>
<tr>
<td>3</td>
<td>450</td>
<td>300</td>
<td>218</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>600</td>
<td>375</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>750</td>
<td>450</td>
<td>294</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>900</td>
<td>525</td>
<td>332</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1050</td>
<td>600</td>
<td>370</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1200</td>
<td>675</td>
<td>408</td>
<td></td>
</tr>
</tbody>
</table>

C-1 Septic Tank Capacity in Gallons

<table>
<thead>
<tr>
<th>Number of Bedrooms</th>
<th>Minimum Capacity</th>
<th>Capacity with Garb Disposal</th>
<th>Capacity with Disposal and Lift</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 or less</td>
<td>750</td>
<td>1125</td>
<td>1500</td>
</tr>
<tr>
<td>3 or 4</td>
<td>1000</td>
<td>1600</td>
<td>2000</td>
</tr>
<tr>
<td>5 or 6</td>
<td>1500</td>
<td>2250</td>
<td>3000</td>
</tr>
<tr>
<td>7, 8 or 9</td>
<td>2000</td>
<td>3000</td>
<td>4000</td>
</tr>
</tbody>
</table>

D-15 Soil Characteristics & SSF

<table>
<thead>
<tr>
<th>Perc Rate (mpI)</th>
<th>Soil Texture</th>
<th>SSF ft³/gpd</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.1 *</td>
<td>Coarse sand</td>
<td>0.83</td>
</tr>
<tr>
<td>0.1 - 5</td>
<td>Medium sand</td>
<td>0.83</td>
</tr>
<tr>
<td>0.1 - 5**</td>
<td>Fine sand</td>
<td>1.67</td>
</tr>
<tr>
<td>6 - 15</td>
<td>Sandy loam</td>
<td>1.27</td>
</tr>
<tr>
<td>16 - 30</td>
<td>Loam</td>
<td>1.67</td>
</tr>
<tr>
<td>31 - 45</td>
<td>Silt loam, silt</td>
<td>2.00</td>
</tr>
<tr>
<td>46 - 60</td>
<td>Clay loam (CL), sandy CL or silt CL</td>
<td>2.20</td>
</tr>
<tr>
<td>61 - 120***</td>
<td>Clay, sandy clay or silt clay</td>
<td>4.20</td>
</tr>
<tr>
<td>>120****</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* No trench >25% of total system
** Soil with >50% fine sand particles
*** A mound must be used
**** An other or performance system

D-42 At-grade Linear Loading Rates*

<table>
<thead>
<tr>
<th>Perc Rate (mpI)</th>
<th>Soil Texture</th>
<th>Other Characteristics in upper 48 inches</th>
<th>LLR (GPD/ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.1 *</td>
<td>Coarse sand</td>
<td>No textural change</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Saturated soil<3'</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bedrock <4'</td>
<td></td>
</tr>
<tr>
<td>0.1 - 5</td>
<td>Sand</td>
<td>No textural change</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Loamy sand</td>
<td>Layers of other textures</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Fine sand</td>
<td>Saturated Soil<3'</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bedrock <4'</td>
<td>5</td>
</tr>
<tr>
<td>6 - 15</td>
<td>Sandy loam</td>
<td>Strong to moderate structure</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No textural change</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weak structure</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Layers of other textures</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Platey or massive structure</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Saturated soil<3'</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bedrock <4'</td>
<td></td>
</tr>
<tr>
<td>16 - 60</td>
<td>Loam, Silt loam, Silt</td>
<td>Strong to moderate structure</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Sandy clay loam</td>
<td>No textural change</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clay loam</td>
<td>Weak structure</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Silty clay loam</td>
<td>Layers of other textures</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Platey or massive structure</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Saturated soil<3'</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bedrock <4'</td>
<td></td>
</tr>
<tr>
<td>61 - 120***</td>
<td>Sandy clay</td>
<td>Strong to moderate structure</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Clay</td>
<td>No textural change</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silty clay</td>
<td>Weak Structure</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Layers of other textures</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Platey or massive structure</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Saturated soil<3'</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bedrock <4'</td>
<td></td>
</tr>
</tbody>
</table>

* Total System LLR should be less than 8 GPD/ft²

D-46 Berm Slope Multipliers

<table>
<thead>
<tr>
<th>% Slope</th>
<th>Upslope Multiplier</th>
<th>Downslope Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td>1</td>
<td>3.06</td>
<td>4.17</td>
</tr>
<tr>
<td>2</td>
<td>2.70</td>
<td>4.35</td>
</tr>
<tr>
<td>3</td>
<td>2.57</td>
<td>4.54</td>
</tr>
<tr>
<td>4</td>
<td>2.45</td>
<td>4.76</td>
</tr>
<tr>
<td>5</td>
<td>2.33</td>
<td>5.00</td>
</tr>
<tr>
<td>6</td>
<td>2.23</td>
<td>5.26</td>
</tr>
<tr>
<td>7</td>
<td>2.12</td>
<td>5.56</td>
</tr>
<tr>
<td>8</td>
<td>2.03</td>
<td>5.85</td>
</tr>
<tr>
<td>9</td>
<td>1.94</td>
<td>6.25</td>
</tr>
<tr>
<td>10</td>
<td>1.86</td>
<td>6.67</td>
</tr>
<tr>
<td>11</td>
<td>1.78</td>
<td>7.14</td>
</tr>
<tr>
<td>12</td>
<td>1.70</td>
<td>7.69</td>
</tr>
</tbody>
</table>
PRESSURE DISTRIBUTION SYSTEM

All boxed rectangles must be entered, the rest will be calculated.

1. Select number of perforated laterals: ____________

2. Select perforation spacing = ____________ ft

3. Since perforations should not be placed closer than 1 foot to the edge of the rock layer (see diagram), subtract 2 feet from the rock layer length

-2 ft = ____________ ft

rock layer length

4. Determine the number of spaces between perforations.
Divide the length (3) by perforation spacing (2) and round down to nearest whole number.

Perforation spacing = ____________ ft / ____________ ft = ____________ spaces

5. Number of perforations is equal to one plus the number of perforation spaces (4).

*Check figure E-4 to assure the number of perforations per lateral guarantees < 10% discharge variation.

__________ spaces + 1 = ____________ perforations/lateral

6. A. Total number of perforations = perforations per lateral (6A) times number of laterals (1).

__________ perforations/lat x ____________ laterals = ____________ perforations

B. Calculate the square footage per perforation.

Recommended value is 6-10 sqft/ perf. Does not apply to at-grades.

1. Rock bed area = rock width (ft) x rock length (ft)

_______ ft x _________ ft = _________ ft²

2. Square foot per perforation = Rock Bed Area/number of perforations(6)

_______ ft² / _________ perforations = _________ ft²/perf

7. Determine required flow rate by multiplying the total number of perforations (6A) by flow per perforation (see figure E-6)

__________ perforations x _________ gpm/perf = _________ gpm

8. If laterals are connected to header pipe as shown in Figure E-1, to select minimum required lateral diameter; enter figure E-4 with perforation spacing (2) and number of perforations per lateral (5).

Select minimum diameter for perforated laterals = ____________ inches

9. If perforated lateral system is attached to manifold pipe near the center, like Figure E-2, perforated lateral length (3) and number of perforations per lateral (6) will be approximately one half of that in step 8. Using these values, select minimum diameter for perforated lateral = ____________ inches.

I hereby certify that I have completed this work in accordance with all applicable ordinances, rules and laws,

________________________ (signature) ______________________ (license #) ____________________ (date)
PUMP SELECTION PROCEDURE

All boxed rectangles must be entered, the rest will be calculated.

1. Determine pump capacity:
 A. Gravity Distribution
 1. Minimum required discharge is 10 gpm
 2. Maximum suggested discharge is 46 gpm
 For other establishments at least 10% greater than the water supply rate, but no faster than the rate at which effluent will flow out of the distribution device.

 B. Pressure Distribution - see pressure design worksheet

 Selected Pump Capacity: ________ gpm

2. Determine head requirements:
 A. Elevation difference between pump and point of discharge.
 ________ feet

 B. Special head requirement? (See Figures - Special Head Requirements)
 ________ feet

 C. Friction loss
 1. Select pipe diameter ________ in
 2. Enter Figure E-9 with gpm (1A or B) and pipe diameter (C1)
 Read friction loss in feet per 100 ft from Figure E-9
 Friction loss = ________ ft/100 ft of pipe

 3. Determine total pipe length from pump discharge to soil system discharge point
 Estimate by adding 25 percent to pipe length for fitting loss.
 Equivalent pipe length times 1.25 = total pipe length
 ________ ft x 1.25 = ________ feet

 4. Calculate total friction loss by multiplying friction loss (C2) by the equivalent pipe length (C3) and divide by 100,
 FL = ________ ft/100 ft x ________ ft / 100 = ________ feet

 D. Total head requirement is the sum of elevation difference (A), special head requirements (B), and total friction loss (C4).
 ________ ft + ________ ft + ________ ft

 Total Head: ________ feet

3. Pump Selection
 1. A pump must be selected to deliver at least ________ gpm (1A or B)
 with at least ________ feet of total head (2D).

I hereby certify that I have completed this work in accordance with all applicable ordinances, rules and laws.

__________________________ (signature) ______________________ (license #) ______________________ (date)
PERCOLATION TEST DATA

-TWO TESTS ARE REQUIRED-

<table>
<thead>
<tr>
<th></th>
<th>Perc test #1</th>
<th>Perc test #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter of hole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth to bottom of hole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Did the hole require presoaking?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PERC TEST #1

<table>
<thead>
<tr>
<th>Time</th>
<th>Interval (minutes)</th>
<th>Depth</th>
<th>Water Drop</th>
<th>Perc Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>START</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PERC TEST #2

<table>
<thead>
<tr>
<th>Time</th>
<th>Interval (minutes)</th>
<th>Depth</th>
<th>Water Drop</th>
<th>Perc Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>START</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PERCOLATION RATE: ___________ SSSF: ___________

Percolation Rate: ___________ SSSF: ___________

Anticipated construction related concerns: ____________________________
Todd County

Septic System Management Plan Agreement

Property Owner: ___________________________ Phone: ___________________________ Date: ___________________________

Site Address: ___________________________ Parcel #: ___________________________

System Designer: ___________________________ Company: ___________________________ Name: ___________________________ License #: ___________________________

This management plan agreement will identify the operating and management activities necessary to ensure the long-term performance of the septic system. This agreement must determine the responsibilities of the system owner and those of the system designer in conducting regular maintenance and monitoring of the septic system.

Identify the service Intervals recommended by the system designer and Todd County Planning and Zoning. The tank assessment for the system must be the **shortest interval of these three intervals**.

Pumping and cleaning of tanks must be done by a licensed professional.

- System Designer: check every ____ months
- Todd County P&Z: check every ____ months
- State Requirement: check every ____ months

My tank needs to be checked every ______ months

Tank pumping and tank maintenance is contracted with ___________________________.

Management Tasks required seasonally or several times per year:

- **Leaks.** Check (listen, look) for leaks in toilets and dripping faucets. Repair leaks promptly.
- **Surfacing sewage.** Regularly check for wet or spongy soil around your treatment area. If surfacing sewage or strong odors are not corrected by pumping the tank or fixing broken caps, call your service professional. Untreated sewage may make humans and animals sick.
- **Alarms.** Alarms signal when there is a problem; contact your maintainer any time the alarm signals.
- **Lint filters.** If there is a lint filter, check for buildup and clean when necessary.
- **Effluent screen.** If there is an effluent screen, inspect and clean it twice a year or per manufacturer recommendations.

Management Tasks required annually and/or scheduled maintenance:

- **Inspection Caps.** Check to make sure they are properly capped. Replace caps that are damaged.
- **Pumps and controls.** Check to make sure the pump and controls are operating correctly and inspect wiring for corrosion and function.
- **Event counter or water meter.** Monitor the average daily water use (if applicable).
- **Septic tank integrity.** Scheduling of pumping and cleaning of tanks at the recommended interval is very important. This maintenance must be conducted through the manhole openings and include verification that tank and tank components are watertight and in good operating condition.

These management tasks are the responsibility of the **septic system owner/septic designer** (Circle one)

<table>
<thead>
<tr>
<th>Property Owner Signature</th>
<th>Date:</th>
<th>Designer Signature</th>
<th>Date:</th>
<th>Todd County P&Z Signature</th>
<th>Date:</th>
</tr>
</thead>
</table>

"I understand it is task manager’s responsibility to properly operate and maintain the sewage treatment system on this property, utilizing the Management Plan. If requirements of the Management Plan are not met, I will promptly notify Todd County Planning & Zoning and take necessary corrective actions. If I have a new system, I agree to adequately protect the reserve area for future use as a soil treatment system."

Todd County Planning & Zoning will not accept sewer designs unless accompanied by a signed Septic System Management Plan Agreement.

Management Plan Agreement Form

Revised 1/1/2014